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The unified program for phase determination, valid for all the space groups and both the equal and 
unequal atom cases, is continued here. The present paper is concerned with the centrosymmetrie 
space groups comprising type 3P 1. A detailed procedure for phase determination is described for 
this type. 

1. I n t r o d u c t i o n  

This is the fourth in a series of papers concerned with 
a program for phase determination initiated by us 
(Karle & Hauptman, 1959, hereafter referred to as 1P). 
The application of the new probability methods, based 
on the Miller indices as random variables, is made to 
the space groups of type 3PI, (Hauptman & Karle, 
1953). This type consists of the eleven primitive 
centrosymmetrie space groups in the hexagonal sys- 
tem. We present here a detailed procedure for phase 
determination which utilizes the same general formula 
and, at the same time, makes use of relationships 
among the structure factors characteristic of each 
space group. 

2. N o t a t i o n  

The same notation as appears in 1P (1959) is employed 
here. 

3. P h a s e  d e t e r m i n i n p ,  f o r m u l a s  

3"1. Basic formulas 

B2, o: ~ 2  ____ 1 + 4~0.2 

M <Xpk~q(h÷k)>k ~- R2, 0" (3.1.1) 

(2~)3/20.~ 

X </~pk~,q(hl_l_k) ~r(hl~h2~k) >k 
0'6 _1/2 

-- 2 0.~/-----~ -t- -~-4 (#h l~h ' l  ~' "4- ~r~h2#ht2r "1- #hl~h2#htlt~..h2)-t- .R3, 0 . 

(3.1-2) 

3.2. Integrated formulas 

.~,2_ 1 20.~ <AtkAt(~+k))k+R~,o (3.2-1) I2, o: ~h  - + C~(t) 04 

0.] 0.~ 0.]/~ 
- - C 3 ( t ) 0 . 3 4 / 2  < A t k A t ( h l + k ) Z / l t C n l + h 2 + k ) > k  - 2 0.~]----~ -3 L 0.4 

t t i t  ! tte t 
X ('~hl ~'~l~tl ' + ~'Vh2 '~h2 "3t- '~hl-f-h2 '~hl-t-h2) + R3, o. (3"2"2) 

In these formulas, p, q, r and t are restricted to be 
positive. Ordinarily they are given values in the range 
2-4. 

The remainder terms are given in the appendix § 6 
and in 1P (1959). Equation (3.1.1) or (3.2-1) serves to 
determine the magnitudes of the structure factors 
[d~[ corresponding to the squared structure. By means 
of equation (3.1.2) or (3.2.2), the phases of these t 
structure factors ~h may be determined. In the next 
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section we describe in detail how these equations are 
to be used for the various space groups included in 
type 3P1, (Monograph I, Table 1, p. 14, 1953). 

4. Pha s e  d e t e r m i n i n g  p r o c e d u r e  

I t  is assumed tha t  the I#h[ have been calculated from 
the observed intensities. From these, the [#~[ are 
obtained by applying (3.1.1) or (3.2-1). In  fact it may 
be advantageous to compute the [#~,[ over a range of 
reflections extending beyond tha t  of the original set of 
observations. We are here concerned only with the 
larger [do~[ and it is the phases of these whose values 
are to be determined. In  the application of (3.1.2) or 
(3.2.2), the values of some [#~"] may  be required. 
These may be estimated from the corresponding [#hl 
or [#~[, or calculated from (3.1.1) or (3.2.1) in which 
# is replaced by # '  and # '  by # ' " ,  given sufficient 
data. 

In  the phase determining procedures to be described, 
it will be seen tha t  the first steps concern the applica- 
tion of (3.1.2) or (3.2.2) with choices of indices which 
take full advantage of the space group symmetry.  
The final step is in the form of a general application 
which is the same for all the space groups. 

The specification of the origin is carried out in 
conformance with the seminvariant theory previously 
developed (Monograph I, 1953). I t  is the same for all 
space groups of a given type. Therefore, a single 
procedure for origin specification obtains for all the 
space groups included in this paper. 

In  type 3P1, the phases ~a~, which are structure 
seminvariants, are of the form 1 -- 0 (mod 2). In  other 
words 1 must be even. This means tha t  once the func- 
tional form of the structure factor has been chosen, 
the values of these phases are uniquely determined 
by  the intensities alone. I t  is of interest to note, in 
the procedures to follow, how a single equation, 
(3.1.2) or (3.2.2), used in conjunction with relation- 
ships among the structure factors, characteristic of the 
particular space group and the chosen functional form 
for the structure factor, does, in fact, lead to unique 
values for the structure seminvariants. 

4.1. Hexagonal system 
We are concerned here with the eleven conven- 

tionally primitive, centrosymmetric space groups of 

the hexagonal system. The special choices for h~ and 
h~, in addition to h~ = he, are shown in the first two 
rows of Tables 1, 2, 3 and 4. Table 1 refers to all 
eleven space groups and, for the two choices of h~ and 

_.¢~2 X2 ~ h~, the coefficient of ~h~ ~h iS always + 1. Tables 2, 3 

Table 1. The choice of hi and h2 for the eleven space 
groups of type 3Px which may be inserted into (3.1.2) 

~ t  2 r-~t t, I in order to obtain Oh16h yrom which q~h may be inferred. 
t 2 t In  these cases the coefficient of #hi #h is + 1 for all the 

space groups 

h x ½ ( 2 h + k ) ,  ½ ( h + k ) ,  l~ 7~, h + k ,  l 

h~ ½(h+~), t(h+2k), l~ h+k, ~, t 
h =h x +h 2 h, k, 0 h, k, 2l 
Condition h-- = k (rood 3) 

and 4 list the coefficients of #h~#h for additional 
choices of hi and he derived from the relations among 
the structure factors in the particular space groups. 
Note tha t  P6/mmm, P6/mcc, P68/mmc and P68/mcm 
have entries in Tables 2, 3 and 4. By means of the 
first choices in Table 3, h l=(h l , / / -bh l ,  l) and h~.= 
(h+~l ,  hi, 1), equation (3.1.2) or (3.2.2) yields the value 
of ~hi,~+h~,Z~h~et multiplied by the numerical co- 
efficient given in the second column of Table 3. 

-- t :For example, for P3cl,  the relationship #h~z-- 
( - 1 )  #ziz following from the chosen functional form 
for the structure factor, gives rise to the entry  ( - 1 )  l 
in column 2, Table 3, for P'3cl. In  this way the value 
of the phase ,~h~2~ is obtained. Since hi may  be chosen 
arbitrarily, ~0h~ez may  possibly be determined in many  
ways. As always, the computations are performed for 

Av~2 _X~ ~ the larger values of ]tahl(.Oh[. With regard to the re- 
maining choices of h~ and h~ in Tables 1-4, h~, k~, and 
l~ may be chosen arbitrarily, permitting the possible 
use of many combinations of hx and h~ for obtaining 
the value of the particular phase, ~h. 

We note tha t  the phases obtained from Tables 1-4 
include both the general and special cases of phases 
which are seminvariants, ~h~t ( 1 -  0 (mod 2)). By the 
use of these, it is possible to calculate the values of 
additional phases which are seminvariants. This is 
accomplished by choosing hi and h~ such tha t  ~h~ 
and q ~  have already been determined from applica- 
tion of Tables 1-4. I t  is to be noted tha t  (3.1.2) or 
(3-2"2) will then yield the value of # ~  #~2 #hl+h~ from 
which the value of ~hl+n~ may  be obtained. 

Table 2. The coefficients of # ~  #~ given by 
hi and h2 and for each 

h I k ~ - 2 k l ,  k l ,  11 h 1, 

h2 ~+2kl ,  k+~ l ,  ll h+ ~ l ,  
h ---- h I + h 2 0, k, 0 h, 
P31m 
_P6/mmm + 1 + 1 + 1 
P63/mcm 
P31c 
P6[mcc ( - -  1)/1 (--  1)Zl 
PBs/mmc 

hi, h+2h1, l 1 
h ÷ ]~ 1, ~-b2hp ll 

h, 0, 0 

the left side of (3.1.2) or (3.2.2), for selected values of 
of six space groups in type 3P1. 

+ h 1,11 h 1, h + ~l, 1 h 1, ~, 1 lc, k 1, 1 
]~1' l l  h + ~ l ,  hi ,  l h + ~ l ,  ~,  l ~, k + ~ l ,  l 

~, 0 h, h, 2l h, 2~, 21 2~, k, 2l 

(-- l )q ( _  1)z (-- 1)t (-- 1)z 
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Table 3. The coefficients of #~,~ ff~, given by the left side of (3.1.2) or (3.2-2), for selected values of 
h~ and he and for each of six space groups in type 3P~. 

h 1 

hz 
h = h l + h  e 

P-3m l 
P6 /mmm 
P6a/mmc 

P-3cl 
P6/mcc 
P6a/mcm 

~,  ~ + h a ,  t ½ ( h + ~ ) , ~ .  t ha, ½(~+~), t h .  h + ~ .  q ha, ~, t, 
h+7;, 7i~, ~ ½(h+~),~, ~ i~l, ½(~+ha), ~. h+~ ,  ha, l~ h+~ ,  ~, l~ 

h, h, 21 h, 0, 21 0, /c, 2l h, h, 0 h, 2~, 0 
/Cl-----h (rood 2) h~--k (rood 2) 

+ 1  + 1  + 1  + 1  + 1  

( -  1)~ ( -  1)~ ( -  1)~ ( -  ~)~ ( - ~)~ 

h, /c~, l~ 
h, ~+~,. Z, 

2h, 7~, 0 

+ 1  

( - 1)~ 

Table 4. The coefficients of #~,~ ~ ,  given by the left side of (3.1.2) or (3.2.2), for selected values of 
h~ and h~. and for each of six space groups in type 3P~. 

h~ h a, k~, l h, k, 11 ~, h + ]¢, 11 
h~. ~h, ~ ,  1 h, k, ll h + k, h., l~ 

h = h t + h  2 0, 0, 2l 2h, 2/c, 0 h, /c, 0 

½(2h+/c), ½(~+/c), 1 
½(h+~), ½(h+2k), 

h, /c, 2l 
h =---/c(mod 3) 

.P6/m 
P6/mmm + 1 + 1 + 1 + 1 
P6/mcc 

P6a/m 
P6a/mcm (-- 1)~ ( -- 1)~ ( -- 1)~ (-- 1)q 
P63/mmc 

For the purpose of specifying the origin, a linearly 
semi-independent phase q0'~ having large corresponding 
[5°'1, is chosen. The value (0 or ~) of ~'~ is then specified 
arbitrarily, thus fixing the origin. Systematic applica- 
tion of equation (3.1.2) or (3.2.2) then permits the 
determination of the phases ~ ,  of all the remaining 
jo~ of interest, using previously determined or specified 
phases as necessary. 

Cu(  = 
pendent phase. We recall tha t  phases of the type 
~o~k9 (g =-even) may be obtained directly from the 
intensities before an origin specification has been 
made. Is is readily seen that,  starting with a specified 
phase of the form ~v~k~, it is possible to find, ultimately, 
the value of any desired phase ~ ,  by suitable choice 
of ht and h~, where h =  h t +  he. 

5. Concluding r e m a r k s  

This paper should be read in conjunction with 1P 
(1959), in which the symbols are defined and general 
remarks are made which are applicable to all the space 
groups, 

The phase determining procedures offer many ways 
to calculate the value of a particular phase. This 
feature, together with the fact that  the calculation of 
the right sides of (3.1.2) and (3.2.2) should yield not 
only the sign of the left side, but  also its magnitude, 
serves as a good internal consistency check as the 
phase determination proceeds. 

6.  A p p e n d i x  

The correction terms for the formulas listed in § 3 
are given here and in 1P (1959). As a general rule, 

for larger N, they make a very small contribution. 
In any specific instance, the investigator can judge 
their importance for himself. 

We define: 

tpt  
7R.,,0- 2 a~/2 (3~0'0'2, + 3~;~-0 + d~h+2k, 2~+~-, 01 

(~4 
4(~/2 . , o's 

× ( ( p -  2 ) ( p - 4 ) +  (q-- 2)(q-- 4)) oz~, 2 
5 o'6 a4 

+ a2 a4 ( p + q - 4 )  + ~ ( ( p -  2) (q-2)  

+ 2 ( p - 2 ) ( p - 4 ) + 2 ( q - 2 ) ( q - 4 ) ) +  .. . , (6.1) 

O-~/2 
sR2,0 . . . .  (5 3~0oez + 2 J°ii0 + 23~i~_~k, eh+k,0 

G4 
t t t  t p t  t t t  

+ ~h+~, h+Z, o + @h+k, ~,+~', 0 + @eh+~., O, 0 
+ + + #i: o) 

10 ~/2 
a2a~/2 ( p + q - 4 )  #~ #~" 

5a4 
( (P-  2) (p-4)  + (q -  2)(q-4)) #h2 

20a6 
+ (p+q- -4)  

(~2 (~4 

5~4 
+ 1-~-a~ ( ( P -  2)(q-- 2) + 2 ( p -  2 ) ( p -  4) 

+ 2 ( q - - 2 ) ( q - 4 ) ) + . . .  , (6.2) 

a141 e 
:R3'°= -4---~a2 ( ( r -  2) $¢~'e~+ ( P - 2 )  #~'~ 

+ ( q -  2) #~,el+h2 ) + e~' (6"3) 
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where 

a~/2 

O'4 
v l i t  l i t  

ffh~ (2ffh~, kt, it+2/2 -}- f f  h~+-k2, h~.,+kl+k2, ll 
ill lit 

+ °~h~.+k~, h~+kl+~., h + °~hl+h~+~-, h~.+~i+2k~, tx 

O-81/2 ffhg(2 ffh9 , ,  , , ,  k2, 2/1"t-/2 "q'- #'"hl"l-k2,-- h2"q-kl'+k2,12 
0"4 

I l l  I l l  
"~ #h2+kl ,  hl-t-kl+k2, 12 "~ ~'~hl+h2+~'l, hl+2kl+k2,12 

+ #;~'~+~+~,, ~+~+~,~, ~) 

0"4 
, i ,  # t , l  -- 

~- ~¢~hl+k2, h2+kl+k2,/1+/2 ~(- h2+kl, hl+kl+k2,  ll+12 
,,, + d~,,, 

"{- ~h2+kl,-hl+-kl+k2,11+/2 hl+k2, h2+kl+/~2,11+/2) 

(6.4) 

5o-I/2 
4o-~ 

'2 - -  ~'~h l+h2) "~ Q2 ,  x ((r -- 2) ffh, -{- (p 2 ) v ~ + ( q - - 2 ) ' * -  

(6"5) 

8 R 3 ,  o = - -  - -  

w h e r e  

,it °'~/2 ~ , ( 5  ~'~ ~,, ~+2~. + ~ + ~ ,  ~+~+~,~ 
O-4 

# . . . .  # , , ,  _ 
-~- h2+kl, hl+kl+k2,  l l  "~- hl+h2+k2, h2+kl+2k2, l 1 

t t !  # ~ 1 ,  

"~- f f  hl+2h2+k2, h2+kt+k2.11 -~- hl+h2+/~2, h2+kl+k2, ll  
, i t  t i t  

"~ #hl-~-h2+k2, h2+}l+k2, ll ~" #h l+k2 ,  }1+2k2, ll 
vv! # t t t  t t t  

eft llt 

O-4 
t t t  tvt 

+o~,,, 2h lTh2Tk l ,  hlWkl+k2,12 -~" i f ' ' '  - - hl+h2+kl ,  h 1-{-kl+k2,1 2 
vtt vt! 

t i t  t t t  # , v !  
-~- f f  2hl+h2+kl,  k2,12 "~ f f  2hl+h2,-hl+k2,12 2[_ h2, hl+2kl+k2,12] 

o- t8 / ~ . ~  , , 5 ~ , , , _ ,,, to hlWh2~ U) hl+h2,klWk2,l l+12 "~- ~X~hl-t-k2, h2+klWk2, ll-Vl2 
O-4 

, t !  t i t  
2f. ~¢~h2+~1, hl+kl+k2, /1+/2 2[_ ffh2+kl,  hl+kl+I¢2,/1+/2 

t~v t t !  

l i t  # l i t  -- 
~'~h2+kl, hl+k2,/1+12 "~- hl+h2+kl ,  kl+k2, 11+12 

I l l  I l l  
+ ~'~hlq-h2+kl, kt+k2, ll+12 "~- ~¢~h'l+h2, h lTk l+k2 ,  ll+12 

t t !  
21- f f  hl+h2, h l+k l+k2 , / l+ /2 )  " (6"6) 

Next  we define (where C~(t) is replaced by C~)" 

1 

7R2, 0 ---- - -  - -  
2 o-~/~ 

O-4 

+ c l o - ~ o - l / 2  (2c~-  c2) #~#~" 

10o-6 (2C1- C2) 
a4 (8C1- 6C2 + Ca) #~2 C1 a2 0"4 C~a~ 

64 ((2C~ C2)9+4C~(8C~-6C9+C3))+ , 
+ 2 ~  - " ' "  8C~ a2 

(6"7) 

sR~,o = - - -  (5d~oo'21+ 2d~o + $~h+2k, 2~+Z,o 
O-4 

t t !  i t ,  pvv ttv 
+ ~h+~., h+~, o + ~h+l. h+k, 0 + ~2h+k, O, 0 + ~0, h+2k, 0 

. . . . . .  2°0-~/2 (2Cl c 2 ) # ~ "  
+ ~2h, ~, o + ~k, 2%, O) + cx o-g o-~/2 

4 0 a 6  (2C1- C~.) 5o-4 (8C1_6C2+C3)#~ 2 C1 o-2o-4 
2C~ o-~ 

5o-4 ((2C1- C2) 2 +4C1(8C1- 6C2 + C3)) + . . .  + ~  , 

(6.8) 

7Ra,' o--iC~2o-I/2 (2C1--C2)(gh2~+gh2-~-~h2~+h2)-}-Q1 , (6"9) 

and 

5o-~/2 (2C~- C2)(d~h~ + #h~+ 5~h~+~2)+ e2. (6.10) ' __ ~2 ' 2  

8 R 3 , 0 - ~  

In  order to summarize the relations among the cor- 
rection terms for for the various space groups in type  
3P1, it  is convenient to identify 

R - R  (°) , (6.11) 

R ' - -  R a) . (6-12) 

Thus, for space groups P3, P31m, P31c, P3-ml and 
P3cl 

R ¢ 9 -  ~(i).  i,o--l~oi, o, j = 0 ,  1; i = 2 ,  3 .  (6-13) 

For  space groups P6/m and P6a/m, 

R(~0 R(~)o+ R~)-" j = 0 ,  1" i - -2 ,  3 (6.14) i, ~ 1 i, 7 ~, ~ ~ ~ " 

Finally, for space groups P6/mmm, P6/mcc, P63/mcm, 
P6~/mmc, 

R q ) _  R(O~+ RoX • ~,o-~ i,. s i,o, j = 0 , 1 ;  i = 2 , 3  (6.15) 
t 

Note tha t  ~Re, o, ~Ra, o, 1R~,o and ~Ra, o are defined in 
1P (1959). 

The remainder terms in the basic formulas are 
especially simple for the special case p = q = r = 2. For 
this case, the formulas reduce to those obtainable by 
the algebraic methods proposed by us (1957). 
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